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Abstract

Determining the market risk using Value at Risk is currently generating
plentiful of discussion in financial markets. The main objective of the first
part of this thesis is to gain a good understanding of the basics of financial
markets, valuation and risk modeling through literature study. In the second
part of this work we consider case-studies related to quantification of market
risk using an R implementation of historical simulations.
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Introduction

Value at risk methods are important and useful tools to quantify the market
risk of portfolio’s in financial markets. Being aware of the risk a portfolio
poses, allows risk managers to help financial institutions to make better deci-
sions. First, these risk managers have to detect which method is appropriate
to apply in a certain portfolio. The first objective of this thesis was to gain
a good understanding of the basics of financial markets, valuation and risk
modeling through literature study. And, the second objective of this study
was an R implementation of historical simulations on the market risk of three
portfolio’s.

The first chapter of this thesis describes some of the derivatives that appear
in financial markets, such as options and forward contracts. In chapter 2, we
continue with time series, with the main focus on Autoregressive time series
models. Stochastic processes such as Wiener’s process and Ito’s lemma were
beneficial to look at in Chapter 3, so the binomial trees and Black-Scholes
model could be derived for valuation of options and portfolio’s in chapter 4.
Next, chapter 5 describes various Value at risk methods for estimating the
Risk in a portfolio. Finally, we complete this study with the estimation of
the VaR of foreign exchange rates using historical simulations.
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Chapter 1

Derivative products

1.1 Forward contracts

In order to protect themselves two parties can agree ahead of time to trans-
act at a specified price, regardless of what the market price of an asset is.
This can be made official by setting up a contract where they agree to buy
or sell an asset on a specified date for a certain specified price. This contract
is a forward contract. For example, a coconut farmer produces half a million
every year. This farmer may not be able to cover his costs when the demand
for coconuts decreases, because that means that the price will drop. On the
other hand we have a juices factory that specializes in making coconut juice
and they cannot cover their costs when the prices of coconuts are too high.
So, each party can experience a loss when the price of coconuts go below or
higher than a certain price. Thus, in this case these two parties can decide
to trade a forward contract.

In a forward 2 positions can occur:

� long position The party that agrees to buy the underlying asset as-
sumes a long position.

� short position The party that agrees to sell the underlying asset as-
sumes a short position.

Hedgers, speculators and sometimes arbitrageurs are the kind of buyers that
engage in a forward contract. Hedgers are traders who protect themselves
against risks that can occur in financial markets through derivatives, which

7



1.1. FORWARD CONTRACTS 8

are financial contracts whose value depend on the value of basic underlying
assets. But a speculator trades derivatives with the prospect of making
a profit. And a arbitrageur takes advantage of differences in price of the
same thing in different markets to make risk-free profit.

1.1.1 Forward prices

Generally, when you assume a long position in a forward contract on an asset,
with delivery price K and spot price ST , then payoff at expiry T is

ST–K

The payoff when you assume a short position in a forward contract on an
asset is

K–ST

Figure 1.1: Payoffs from forward contracts

Example So consider that we, as arbitrageurs, want to buy a non-dividend-
paying stock in 6 months on a long forward contract. Suppose that the stock
price of one share is $30 and the risk-free of interest rate (with continuous
compounding) is 8% per annum. Then, the forward price is

30e0.08×6/12 = 31.22
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In general, the price of a forward contract is

F0 = S0e
rT

F0 = forward price
S0 = current spot price
r = risk-free rate per annum
T = delivery time in years

So, the forward price is in line with the spot price. This is because of
the assumption that there is no arbitrage opportunity and no underlying
dividend costs. Therefore, this not a riskless investment and the investor
cannot resell the stock higher in a different market. If the forward is out
of line with the spot price, then there exists a arbitrage opportunity. Thus,
when the investor resells the stock they will make a riskless profit.

1.2 Put and Call options

There are two types of options in the over-the-counter market. A call option
gives the holder the right to buy an underlying asset at a certain expiration
date for a certain price. And a put option gives the holder the right to sell
an underlying asset at a certain expiration date for a certain price. In both
of these cases there is no obligation. The strike price or expiration price
is the price in the contract. The difference between American options and
European options is, that an American option can be exercised at any time
up to the expiration date, while a European option can be exercised only on
the expiration date itself.

1.2.1 Examples

The following examples give an explanation of how European put and call
options work.

European call option An investor wants to buy 50 shares for $8 through
a European put exchange, meaning that the total cost is worth $400. Cur-
rently, the price of the stock is $52 and the strike price is $50. As mentioned
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before, we know that the investor can only exercise on the expiration date,
because the option is European. Logically, the investor will only choose to
trade if the stock price is more than $50. The investor will make a profit if
the price is more than $58.
p = price on the expiration date to make a profit
p = $50 + $8 = $58

Let’s say the investor decides to trade at a price of $65. So, the total cost of
the 50 shares will be $3250 ($65 × 50 = $3250). Then, the profit per share
is $15 and the total profit is $750 ($15 × 50 = $750). Including the initial
investment he will make a profit of $350.
But when the price is $55 on the expiration date, the investor will suffer a
loss of $150 (50 × $5 - $400 = $250 - $400 = - $150)

European put option SMW (fictive investor) wants to sell 100 shares for
$6 through a European put exchange, meaning that the total cost is worth
$600. Currently, the price of the stock is $75 and the strike price is $80.
Logically, the investor will only choose to trade if the stock price is less than
$80. The investor will make a profit if the price is less than $74.
p = $80 - $6 = $74

Let’s say SMW still decides to trade at a price of $60. The profit per share
is $20 and the total profit is $2000 (($80 - $60)× 100 = $2000). Taking the
initial cost into account, the profit will be $1400. But when the price is $85
on the expiration date, the investor will suffer a loss of $1100 ($80 - $85 =
- $5 and (100 × -$5) - $600 = -$1100). Thus, in this situation the investor
will not exercise the option and only loses the premium.



Chapter 2

Time series

A time series is a sequence of measurements of data points in successive
order. Time series analysis is useful for extracting necessary statistics and
other characteristics of the data. A time series model will generally give a
better prediction of observations in the near future. Often, time series models
are used in Econometrics and Mathematical finance, Statistics, Modeling,
Meteorology and Hydrology. The Autoregressive (AR) model is one of the
most widely used time series models, therefore I shall discuss this later in
this chapter. But firstly, we will look at the definition of time series along
with the different types there are and some examples.

Definition 2.1 We can mathematically define time series as a set of random
variables {Xt}, t = 0, 1, 2, . . . where t represents the time period.

2.1 Types of times series models

Based on the type of variable a time series model contains, we can classify it
in 2 two groups:

1. Univariate
When a model only consists observations of a single variable recorded
over regular time intervals. i.e. weekly returns data of sock.

2. Multivariate
When a model has observations of more than one variable over the

11
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Figure 2.1: A time series graph, of monthly car sales of a random company,
with a positive trend

same time period. i.e. The SBS collects data of 300 single moms on
how much they spend on groceries in the past 3 months.

According to the rate of occurrences in the data (hourly, daily, weekly,
monthly, annually, etc) different patterns may appear in time series graphs.
The graphs can have a decreasing or increasing behavior over time with a
constant slope or there may be patterns around the slope. These behaviors
are described as the components: trend, seasonal and cyclic:

� Trend Continuous increase or decrease in data over a long time period,
which is not always linear. When the values are increasing it is called
a positive trend and a negative trend when the values are decreasing.

� Seasonal Predictable or regular fluctuations that occur over the course
of a year, such as monthly or quarterly. Typically in a specific period of
the year. i.e. in the months in the summer there is a large consumption
of ice cream.

� Cyclic Wave fluctuations which occur for periods over longer than a
year. These fluctuations are rarely regular and are usually a result of
economic conditions.

� Irregular Fluctuations that cannot be explained by the trend, seasonal
and cyclical movements. They can also be described as ’accidental’
influences.
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The following figures are different examples of the four components combined.

Figure 2.2: shows strong seasonality in the monthly housing sales, as well as
some strong cyclic behavior

Figure 2.3: shows a downward trend in the US treasury bill contracts
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Figure 2.4: shows a strong increasing trend, with strong seasonality in the
Australian quarterly electricity production

Figure 2.5: shows no trend, seasonality or cyclic in the Google closing stock
price

If the current value of the series is a linear function of previous observation
then the time series model is said to be linear and non-linear when the
current value of the series is a non-linear function. In a continuous time series
observations are measured at every instance of time, whereas a discrete time
series contains observations measured at discrete points in time.
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2.2 Local examples

In this section we have the time series graphs of USD-SRD exchange rates,
crude oil and gold prices.

Figure 2.6: USD-SRD exchange rates from december 2015 - november 2020
(Source: Trading Economics)

In figure 2.6 there is no trend, seasonality or cyclic behavior. However,
there is a huge increase of the exchange rates in 2015 and 2020, which are a
result of inflation and economic recession.

Figure 2.7: USD Gold prices per oz from May 2016 - May 2021 (Source:
Trading Economics)
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Figure 2.7 shows a upwards or positive trend and some seasonality in the
USD gold prices. The increase of these prices are significantly impacted by
COVID-19 due to an increase of uncertainty in financial markets, which has
led to a bigger demand for gold. There is also a certain relationship between
gold and crude oil prices. This means that when there is an increase or
decrease in gold prices, crude oil will behave in the same matter. In figure
1.8 an upwards trend can clearly be seen.

Figure 2.8: USD crude oil prices per oil barrel from 2001-2021(Source: Trad-
ing Economics)

In figure 2.8 not only an upwards trend but also some cyclic behavior can
be seen in the crude oil prices.

2.3 Measurement functions

Definition 2.2 The mean function is defined as

µt = µxt = E[Xt] =

∫ ∞
−∞

xft(x) dx

provided it exists, where E denotes the usual expected value operator.

Definition 2.3 The autovariance function is defined as

γ(s, t) = γx(s, t) = cov(Xs, Xt) = E[(Xs − µs)(Xt − µt)],
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for all s and t. In this case we assume that the variance of Xt is finite.
The autocovariance is useful for measuring the linear dependence between
two observations on the same series at different times. – Very smooth series
exhibit autocovariance functions that stay large even when the t and s are
far apart, whereas choppy series tend to have autocovariance functions that
are nearly zero for large separations.

Definition 2.4 The autocorrelation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)

With the Cauchy-Schwarz inequality

|γ(s, t)|2 ≤ γ(s, s)γ(t, t),

we can simply show that −1 ≤ ρ(s, t) ≤ 1.

With the ACF the linear predictably of the time series at time t, using
only the value Xs, can be measured. If Xt can be perfectly predicted from
Xs by a linear relation, then the ACF is ±1.

2.4 White noise and stationary

Sometimes in time series forecasting, we can come across the term white
noise. White noise series are time series that show no autocorrelation, mean-
ing that the amount of correlation (time lag) between the values is very close
to zero. Gaussian white noise is white noise with independent normal ran-
dom variables.

Properties of white noise process:

1. The mean, E[Yt], is constant.

2. The variance, Var[Yt], is constant.

3. The auto-covariance is zero.
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Forecasting time series data is easier when the series is stationary. We
speak of stationarity when the joint probability of a series does not change
over time, which means the mean, variance remain constant over time and
the is no seasonality. If the series is not stationary, it can be transformed
using mathematical methods.
Stationarity can be distinguished by strictly stationarity and weakly sta-
tionarity.

Strict stationarity
The distribution of a stochastic process doesn’t change over time when the
process is strictly stationary. Thus, the joint distribution depends only on
the difference in time and not the location in time.

Mathematically, if X is a discrete stochastic process with distribution F then,

FX(xt1+h
, ..., xtn+h

) = FX(xt1 , ..., xtn)

Weak stationarity
A weak stationary process has a constant mean and variance and the variance
between two time points, Yt and Yt−s, is constant. The coavariance only
depends on s, which is the difference between these two time points and not
the location. In other words, Xt, t ∈ Z is weakly stationary if:

1. E[Xt] = µ, for all t ∈ Z;

2. E[Xt
2] <∞, for all t ∈ Z;

3. γx(s, t) = γx(s+ h), (t+ h), for all t, s, h ∈ Z;

2.5 Autoregressive Models

A Autoregressive model (AR) is a commonly used linear time series model,
where past observation are needed to forecast the current value. This model
explicitly works on stationary time series.

Definition 2.5 An autoregressive model of order p, abbreviated AR(p),
can be written as
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Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + wt

where Xt is stationary and Xt−1, Xt−2, ..., Xt−p are the past series values.
ϕ1, ϕ2, ..., ϕp are the parameters of the model and wt is a white noise term
with wt ∼ N(0, σ2

w).

2.5.1 AR(1) process

An AR(0) process is the simplest AR process, which only consists of white
noise and has no dependence between the terms.
An first-order autoregression process, AR(1), is written as:

Xt = ϕ1Xt−1 + wt (2.1)

From (2.1), we can see that only the previous term and the noise term are
essential for the output. If | ϕ1 |< 1, then the process is stationary. If
ϕ1 = 1, then Xt is not stationary, as its variance depends on t, and is
therefore infinite.

Suppose that | ϕ1 |< 1, then

The Mean is

E(Xt) = 0 (2.2)

Proof

Xt = ϕ1Xt−1 + wt

= ϕ1(ϕ1Xt−2 + wt−1) + wt

= ϕ1tX0 +
t−1∑
j=0

ϕj1 wt−j

(2.3)

Now, E[Xt] = ϕt1 E[X0] +
t−1∑
j=0

ϕj1 E[wt−j]

The expectation of wt−j is zero, so now we have: E[Xt] = ϕt1 E[X0].
Xt is stationary which means that this equation can only be true if E[X0] = 0.
This results in E[Xt] = 0.
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The Variance is

V ar(Xt) =
σ2
w

(1− ϕ2
1)

(2.4)

Proof
We can easily see that,
σ(Xt) = ϕ2

1 σ(Xt−1) + σ(wt) + 2 ϕ1 Cov(Xt−1, wt).
Xt−1 and wt are uncorrelated, which means that Cov(Xt−1, wt) = 0.
So,

σ(Xt) = ϕ2
1 σ(Xt−1) + σ2

w (2.5)

Recall that the the process is stationary, i.e.

σ(Xt−1) = σ(Xt) (2.6)

From(2.5) and (2.6) we get,

σ(Xt) =
σ2
w

(1− ϕ2
1)

The Autcorrelation Function (ACF) is

ρh = ϕh1 (2.7)

Proof

We can deduce that:

Xt+h = ϕh1 Xt+
h−1∑
j=0

ϕj w(t+h)−j

Cov(Xt+h, Xt) = Cov(ϕh1 Xt+
∑h−1

j=0 ϕ
j
1 w(t+h)−j, Xt)

There is no covariance between Xt and the error terms, so we have

Cov(Xt+h, Xt) = ϕh1 Cov(Xt, Xt)

= ϕ1h σ(Xt)

= ϕh1
σ2w

1− ϕ2
1

(2.8)
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γ(h) = Cov(Xt+h, Xt) = ϕh1
σ2w

(1− ϕ2
1)

γ(0) = Cov(Xt, Xt) = σ(Xt) =
σ2w

(1− ϕ2
1)



2.5. AUTOREGRESSIVE MODELS 22

Examples AR(1) processes

Figure 2.9: Xt = 0.2Xt−1 + wt Figure 2.10: Xt = 0.5Xt−1 + wt

Figure 2.11: Xt = 0.8Xt−1 + wt Figure 2.12: Xt = 0.9Xt−1 + wt

In these figures it is shown that when ϕ1 is closer to 0 the more it will
resemble white noise.
As there has been proven that ρh = ϕh1 , then figure 1.9 gives ρh = (0.2)h.
And ρh <<, when h >>.

As we end this introduction on time series, it is also important to know
that these series can represent stochastic processes. Chapter 3 follows with
a discussion on this subject.



Chapter 3

Stochastic processes

Stochastic processes are often used in financial models for forecasting with
random variables. A Markov process describes a sequence of possible out-
comes (stochastic) where the future values only depend on the present value.
Alluding that past values are irrelevant for this process. Usually, it is as-
sumed that the changes in the prices of underlying assets (such as stocks)
describe a Markov process. So, through this process we can determine the
future price of an asset with the current price. In financial markets, this
makes it a bit difficult for investors to trade without risk.
Geometric Brownian motion, a Wiener’s process, and Itô’s lemma are fun-
damental for the valuation of options, which is why I shall first consider the
properties and results of these processes.

3.1 Wiener’s process

A stochastic process, Xt, where X is a variable that changes over time and t
the time can be distinguished by:

� A discrete variable with continuous time

� A discrete variable with discrete time

� A continuous variable with discrete time

� A continuous variable with continuous time

The Wiener process is a Markov stochastic process which has a continuous
variable with continuous time. In physics this process is called Brownian

23
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motion.

The changes that the variable follows when it comes to a small interval ∆t:

First property
∆z = ε

√
∆t (3.1)

ε is a standard normal variable with a mean of zero and a variance of 1.

Second property

The values of ∆z for any two different periods of time are independent.
From (3.1) it follows that ∆z also has a standard normal distribution, mean-
ing that:

� E[∆z] = 0

� Variance of ∆z =
√

∆t

� Standard deviation of ∆z = ∆t

If z(T )− z(0) is a Wiener process over a long period of time T, then

� E[z(T )− z(0)] = 0

� Variance of [z(T )− z(0)] = T

� Standard deviation of [z(T )− z(0)] =
√
T

When ∆ → 0,
√

∆ → 0 at a much slower pace. Therefore, we will have
changes in the Wiener process as ∆t decreases to 0. The Wiener process
stays contained when ∆t is increased. Because of this we can observe a few
properties:

1. The Wiener process is jagged at any proximity, so the path of this
process is infinite.

2. Non-overlapping intervals are infinite
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Definition 2.1 Generalized Wiener process A Wiener process, ∆x, is
a stochastic process with a variance rate of 1 over a time interval ∆t and is
given by

∆x = a∆t+ bε
√

∆t,

where ε ∼ N(0, 1), a is the drift rate and b is the variability. The properties
are:

� E[∆x] = a∆t

� Variance of ∆x = b
√

∆t

� Standard deviation of ∆z = b2
√

∆t

3.2 Geometric Brownian motion of a stock

price

Brownian motion also known as the Wiener process was named after the
botanist Robert Brown. This process was originally the motion of random
particles inside gas or fluid and is necessary to derive the Black-Scholes model
(Chapter 4).

∆S

S
= µ∆t+ σε

√
∆t (3.2)

Equation (2.2) is the formula of a discrete-time version of the Geometric
Brownian motion model (figure 2.1), which can also be written as

∆S = µS∆t+ σSε
√

∆t (3.3)

∆S = change in the stock price S
∆t = time interval
µ = expected rate of return from S
σ = volatility of S
µ∆t = expected rate of return from ∆S

S

σε
√

∆t = stochastic component of the return
σ2∆t = variance
σ
√

∆t = standard deviation
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If assumed that the changes in the stock price S have a normal distribu-
tion, the ∆S

S
also has a normal distribution. So,

∆S

S
∼ N(µ∆t, σ2∆t)

This will be shown in the remainder of this chapter. For this, we will first
introduce Itô’s Lemma.

3.3 Itô’s Lemma

Let S be the stock price at time t. The behavior in the stock price can be
described as dS = µSdt+ σSdz where dz = ε

√
dt is a Wiener process. This

equation represents the stock price following an Itô process. The variable
µ is the stocks expected rate of return the stock price and it is expected to
increase with µS over time. The variable σ is the volatility of the stock price
and σ2 is referred to as its variance rate.
If dz is zero then integrating dS between 0 and T, shows that the stock price
increases exponentially rate over time.

Now we consider G, which is a function of S and t, say G = G(S,t). Be-
cause G is a function of S the stochastic variable S, G will have a stochastic
component.
The Taylor series for G = G(S,t) gives:

dG = ∂G
∂t
dt+ ∂G

∂S
dS + ∂2G

∂2S
(dS)2

= ∂G
∂t
dt+ ∂G

∂S
dS + ∂2G

∂2S
(µSdt+ σSdz)2

= ∂G
∂t
dt+ ∂G

∂S
dS + ∂2G

∂2S
(µ2S2(dt)2 + µσS2dtdz + σ2S2(dz)2)

= ∂G
∂t
dt+ ∂G

∂S
dS + ∂2G

∂2S
(µ2S2(dt)2 + µσS2εdt

√
dt+ σ2S2ε2dt)

Taking into account the infinitesimal nature of dt so that any power higher
than one vanishes:

dG =
∂G

∂t
dt+

∂G

∂S
dS +

∂2G

∂2S
σ2S2ε2dt
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Because E[ε2] = 1, we get:

dG =
∂G

∂t
dt+

∂G

∂S
dS +

1

2

∂2G

∂2S
σ2S2dt

=
∂G

∂t
dt+

∂G

∂S
(µSdt+ σSdz) +

1

2

∂2G

∂2S
σ2S2dt

= (
∂G

∂t
+
∂G

∂S
µS +

1

2

∂2G

∂2S
σ2S2)dt+

∂G

∂S
σSdz

(3.4)

Thus Itô’s lemma reveals that if a stock price follows a Itô’s process, a func-
tion consisting S and t follows the above equation.

For example, let G = ln(S), then
∂G
∂t

= 0, ∂G
∂S

= 1
S

, ∂2G
∂2S

= − 1
S2

dG = (µ− 1
2
σ2)dt+ σdz

G = ln(S) follows a Wiener process, since µ and σ are constant. The drift
rate is (µ− 1

2
σ2), σ is the volatility and µ2 is the variance rate.

The change in ln(S) between time 0 and some future time T has a normal
distribution, with mean (µ− 1

2
σ2)T variance σT.

So,

ln(ST )–ln(S0) = ln
ST
S0

∼ φ[(µ− 1

2
σ2)T, σ2T ]

or

ln(ST ) ∼ φ[(ln(S0) + µ− 1

2
σ2)T, σ2T ]

where

ln(ST ) = the stock price at time T
ln(S0) = the initial stock price
ln(S0) + µ− 1

2
σ2)T = the mean of ln(ST )

σT = the standard deviation of ln(ST )

ln(ST ) is lognomally distributed, which means that ST > 0

ST is normally distributed because ln(ST ) is normally distributed (ac-
cording to the log-normal property).
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3.4 Log-normal distribution

Log-normal distributions are defined as normal distributions of logarithmic
values with parameters µ (mean) and σ (standard deviation). The definitions
for variables that are log-normally distributed will be useful for derivation of
the Black-Scholes model, that will be discussed later in another chapter. In

the figure below in each

Figure 3.1: Log-normal density functions are shown where the density
gets higher as the standard deviation gets smaller.



Chapter 4

Binomial option pricing and
the Black-Scholes model

The focus of this chapter will be on the pricing of options. The processes and
results we have seen in the previous chapter are important keys for deriving
the models that will be mentioned.

4.1 Pricing options with Binomial trees ex-

amples

The one-step binomial tree is one of the most useful models that is used
to determine the value of a stock option. Later in this chapter, I will also
discuss the Black-Scholes model which is another useful alternative when it
comes to pricing options.
A binomial tree is a graphic representation of different possible values that
the stock price may take at certain time periods.

By means of an example it will be explained how the approximation of the
future price of an option can be done by making a construction of a binomial
tree.

One-step binomial tree example The price of a equity (stock) is cur-
rently $40. It is known that at the end of 1 month it will be either $42 or $38.
The risk-free interest rate is 8% per annum with continuous compounding.
We are interested in valuing a 1-month European call option with a strike

29
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price of $39. If the stock price is $40 at the end of that one month, then the
value of the option will be $3. If it the stock turns out to be $38, the value
of the option will be $0. I consider that arbitrage opportunities do not exist.
The delta (∆) of a stock option is the ratio of the change in the price of the

Figure 4.1: Example One-step binomial tree

stock option to change the price of the underlying shares. It is the number of
units of the stocks we need to hold for each shorted option to create a risk-
free portfolio. It is important to know at what value of delta the portfolio
is without risk. The value of the shares is 42∆ and the option is the valued
3, when the price goes from $40 to $42. This means that the total value of
the portfolio is 42∆ - 3. When the price reduces from $40 to $38, the value
of the shares is 38∆ and the option has no value (value is zero). Then the
total value of the portfolio is 38∆. Trading the option is always riskless if ∆
is chosen such that the end value does not change in both cases.
Calculating ∆ by: 42∆− 3 = 38∆⇔ ∆ = 0.75

If the stock price increases to $42, the value of the portfolio is

42× 0.75− 3 = 28.5

If the stock price reduces to $38, the value of the portfolio is

38× 0.75 = 28.5
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The value of the portfolio is always 28.5 at the end of the life of the option,
whether the stock price moves up or down. In this example the risk-free rate
is 8% per annum. The present value of the portfolio is

28.5e−0.08×1/12 = 28.31

Currently the portfolio is valued at

f = 30− 28.31 = 1.69

f = option price

4.2 One- Step generalization Binomial trees

Figure 4.2: General one-step binomial tree

Consider a stock whose price is initially S0. We want to derive the current
price f of a European call option on the stock. Suppose that the option lasts
for time T and that during the life of the option the stock price can either
move up from S0 to a new level, S0u, or down from S0 to a new level S0d,
where u > 1 and d < 1.
The payoff from the option is fu if the stock price moves up and fd if the
stock price moves down.

We consider a portfolio consisting of a long position in ∆ shares and a short
position in one option. We calculate the value of ∆ that makes the portfolio
risk-free:

S0u∆− fu = S0d∆− fd (4.1)
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From we (4.1) we get:

∆ =
fu − fd
S0(u− d)

(4.2)

The equation above shows that ∆ is the ratio of the change in the option
price to the change in the stock price as we move between nodes. The ab-
sence of arbitrage opportunities implies that the fair price of any investment
is given by the present value of its future payoff. So we should have that
the cost of setting up the above portfolio is equal to the present value of
its future value. Since the portfolio has no risk, we should use the risk-free
interest rate (r) to discount any future payments. In other words, a risk-free
portfolio must earn the risk-free interest rate. Therefore, we have

S0∆− f = (S0u∆− fu)e−r∆t
f = S0∆− (S0u∆− fu)e−r∆t
f = S0∆(1− ue−r∆t) + fue

−r∆t

Substitute ∆ into the above to get:

f = S0
fu−fd

(S0(u−d)
(1− ue−r∆t) + fue

−r∆t

f = (fu−fd)(1−ue−r∆t)+fue−r∆t(u−d)
(u−d)

f = fu(1−de−r∆t)+fd(ue−r∆t−1
(u−d)

So,
f = e−r∆t[pfu + (1− p)fd] (4.3)

where p = er∆t−d
u−d .

Thus, (4.3) states that the value of the option today is its expected future
value discounted at the risk-free interest rate. The expected stock price at
time T is E(ST ) = pS0u+ (1− p)S0d = pS0(u− d) + S0d

E(ST ) = ( (er∆t−d)
u−d )S0(u− d) + S0d = S0e

r∆t

The above shows that the stock price grows, on average, at the risk-free rate.
Therefore, setting the probability of an up movement equal to p, is equiva-
lent to assuming that the per annum rate of return on the stock equals the
risk-free rate.
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4.3 Black-Scholes model

In financial markets investors always want to know how much the stock price
relatively differs to the strike price. The time they have to exercise the option
with a certain risk-free interest and the volatility of the underlying stock are
also important factors to know. Investors would most likely want to trade
options that are more volatile, because those are more valuable.
In this section we are going to discuss the Black-Scholes model, a mathemat-
ical model, used in financial markets.

4.3.1 Black-Scholes-Merton formulas

The Black-Scholes-Merton formulas that can be deduced from the Black-
Scholes differential equation are:

c = S0N(d2)−Ke−rtN(d1) (4.4)

p = Ke−rtN(−d1)− S0N(−d2) (4.5)

where c is the value of a European call option and p the value of a European
put option.

And

d1 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d2 − σ
√
T

and

d2 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

Equation (4.4) can also be used to value an American call option, but a an-
alytic formula to value an American put option on a non-dividend paying
stock has yet to be produced. With the Black-Scholes model it can also be
shown that the price of a forward contract is S0e

rT , by taking the difference
of an put and call option.

Next, there are some probability terms we need mention before deriving
the formulas.
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Definition 4.1 The Cumulative Distribution of a random variable X
for all real numbers b is defined by

F (b) = P{X ≤ b} =

∫ b

−∞
f(x) dx

where f is the probability density function of X.

Definition 4.2 The Cumulative Distribution Function of a standard
normal random variable X is given by

N(x) =
1√
2π

∫ x

−∞
e

−y2

2 dy

and the density of X is given by

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 for −∞ < x <∞

Definition 4.3 If X is a continuous random random variable with proba-
bility density function f(x) then the expectation of X is

E(X) =

∫ ∞
−∞

xf(x) dx

According to Ito’s lemma the smooth function G(S, t) = log(St) follows

d log(St) = (r − 1

2
σ2)dt+ σdzt (4.6)

Here we have used the risk-neutral valuation where the expected return from
the underlying asset µ is the risk-free interest rate r. Now integrating both
sides we get

∫ T

t

d log(Su) =

∫ T

t

(r − 1

2
σ2)du+

∫ T

t

σdzu (4.7)

log(ST )− log(St) = (r − 1

2
σ2)(T − t) + σ(zT − zt) (4.8)
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By one of the properties of Brownian motion zT − zt has a normal dis-
tribution with mean 0 and variance T − t. So if we indicate Z as standard
normal variable, zT − zt '

√
T − tZ.

Taking the exponential of equation 4.16 above we get

ST
St

= exp (r − 1

2
σ2)(T − t) + σ

√
T − tZ

Now we can conclude that ST
St

has a log-normal distribution.

The expectation of a European option at maturity using risk-neutral val-
uation is

[max(ST −K, 0]

The expected value of the call option c discounted with the risk-free interest
rate, because of risk-neutral valuation is

c = e−r(T−t) E[(ST −K)+] (4.9)

Computing the expectation

First, let τ = T − t and for −Z we’ll write instead Z which is symmetri-
cally equivalent. Then we substitute ST in (A.4):

c = e−rτ E[(ST −K)+]

= e−rτ E[(St exp{(r −
1

2
σ2)τ − σ

√
τZ} −K)+]

=
e−rτ√

2π

∫ ∞
−∞

(St exp{(r −
1

2
σ2)τ − σ

√
τx} −K)+ e−

1
2
x2

dx

=
e−rτ√

2π

∫ d1

−∞
(St exp{(r −

1

2
σ2)τ − σ

√
τx} −K) e−

1
2
x2

dx (x < d1)

=
1√
2π

∫ d1

−∞
e−rτ St exp{(r −

1

2
σ2)τ − σ

√
τx}e−

1
2
x2 − 1√

2π

∫ d1

−∞
e−rτK e−

1
2
x2

dx

According to Definition 4.2 it follows that

1√
2π

∫ d1

−∞
e−rτK e−

1
2
x2

dx = e−rτKN(d1)
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Further solving of the integral on the left and defining y = x+ σ
√
τ gives

St√
2π

∫ d1

−∞
exp{−1

2
(x2 − σ2τ)− σ

√
τx} dx

=
St√
2π

∫ d1

−∞
exp{−1

2
(x+ σ

√
τ)2} dx

=
St√
2π

∫ d1+σ
√
τ

−∞
exp{−1

2
y2} dy

= StN(d2)

where d2 = d1 + σ
√
τ .



Chapter 5

Value at risk

In financial markets more often investors and financial managers are inter-
ested in financial risk beside the value of a portfolio. This chapter focuses on
determining the Value at Risk (VaR), which is the total risk of a portfolio.
There are 2 methods going to be discussed for estimating VaR, which are:
Historical simulation and model-building approach.

The VaR tells a portfolio holder how much they are expected to lose at
maximum over the next N days within a certain confidence level or proba-
bility.
Suppose that a portfolio holder wants to know what the maximum loss will
be in 10 days with 95% certainty and the value determined is $100,000.
This is interpreted as: the holder is 95% confident that the loss in 10 days
will be $100,000 or less. We can also say that there is a 5% chance that the
minimum loss will be $100,000 or more. In this case 100,000 is the VaR (V)
of the portfolio.
VaR has two parameters: N (days) and X (confidence level). An important
assumption, when the returns of a portfolio are normally distributed, is:

N−day VaR = 1−day ×
√
N

5.1 Model-building approach

This approach assumes the probability distributions of the returns of the
market variables. Actual data is used to estimate the model. When is using
this approach the portfolio can consist of one stock or two stocks.
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Some assumptions are that:

1. the expected change in the value of the portfolio is zero.

2. the change in the value of the portfolio has a normal distribution.

Single stock An investor has $5 million in Google shares. He wants to
know what the maximum loss will be over 20 days with 95% certainty, so
N = 20 and X = 95. The standard deviation of the change in the portfolio
in 1 day is $100, 000. This means that the standard deviation in 20 days is:
100,000

√
20 = $447,213. N−1(0.05) = −1.645, so the VaR for 1-day is

1.645× $100,000 = $164,500

And the 20-day 95% VaR is

$164,500×
√

20 = $735,666

Two stocks Now 2 investors are interested in knowing the 95% VaR of
the portfolio over 20 days. The portfolio consist of $2 million and $5 million
shares from the investors. Suppose that the correlation between the returns
is 0.2. From statistics it is known that the standard deviation of X + Y is

σX+Y =
√
σ2
X + σ2

Y + 2ρσXσY

if X and Y have standard deviations σX and σY with ρ as the correlation
between both.
Suppose that the day-to-day volatility of investor X is 1% and investor Y
2%, so

σX = 20, 000 and σY = 100, 000

Then

σX+Y =
√

20, 0002 + 100, 0002 + 2× 0.2× 20, 000× 100, 000 = 102, 020

The VaR for 1-day is

1.645× $102, 020 = $167, 823
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And the 20-day 95% VaR is

$167, 823×
√

20 = $750, 527

The change in value of a portfolio has a linear relation with the returns
of the market variables (normally distributed) and is given by

∆P =
n∑
i=1

αi∆xi

with variance

σ2
P =

n∑
i=1

n∑
j=1

ρijαiαjσiσj

or

σ2
P =

n∑
i=1

α2
iσ

2
i + 2

∑
i<j

ρijαiαjσiσj

∆xi = the return on asset i in one day
αi∆xi= the invesment in asset i in one dayy
σi= the standard deviation of asset i
σp= the standard deviation of ∆P
σ2
i = the variance of ∆P
αi= the amount invested in asset i
αj= the amount invested in asset j
ρij= correlation coefficient between returns asset i and asset j

The variance of the portfolio return in one day, ∆P
P

, is

n∑
i=1

n∑
j=1

ρijωiωjσiσj

where ωi is the weight in the portfolio of investment i.

5.2 Monte Carlo stimulation

The Monte Carlo simulation can be useful when applying the model-building
approach for calculating the VaR. This method simulates the probability
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distribution of the change in value of the portfolio over a specific period of
time.

After determining the value of the portfolio on the current day, a sample
is taken from the returns on the ith asset. The sampled ∆xi’s are then used
to calculate the market variables at the end of that day to determine the new
value of the portfolio. A sample ∆P is the difference between the old and the
new of the portfolio on t day. And by repeating this process the probability
distribution of ∆P can be created. Now, the 1-day VaR determined for N
samples is defined as the value of ∆P for the ((100−X)%×N)th worst case.

5.3 Historical simulation approach

Historical simulation is the simplest approach of evaluating VaR. It uses
historical data of any time in the past to predict what will occur in the
future.
Before we calculate the VaR of a portfolio we need to identify important
factors that can affect the portfolio such as the amount of money invested,
interest rates etc.
If, for example, data is collected over 201 days then there are 200 different
scenarios that can happen between Day i and Day (i+1). In scenario (i+1)
the percentage changes of the variables are equal between Day i and Day
(i+1).

ith scenario market value = vn
vi
vi−1

where vi is the value of the market variables on Day i and n is the base date.



Chapter 6

Estimation of the Value at Risk
of Foreign Exchange rates

In this section the Value at Risk will be estimated for EURO/SRD and
EURO/USD exchange rates by using historical simulation. This approach is
useful for financial institutions and even corporates such as gas and oil firms
to estimate the daily market risk.

6.1 Methodology

First we created 3 hypothetical portfolio’s, based on the currencies and peri-
ods. Let’s say the first portfolio is worth 1 million EURO that is invested in
USD exchange business. The EURO/USD exchange rates data used for this
portfolio is from January 2, 2015, to October 15, 2015. The second portfolio
is the same as the first portfolio but here we use data from April 1, 2020, to
September 30, 2021. The historical data used in these first two portfolio’s
have been collected from Marcotrends research financial data. Now, the third
portfolio is worth SRD 1 million that is invested in EURO exchange transac-
tions. For this portfolio, historical data of EURO/SRD exchange rates from
January 4, 2021, to September 1, 2021, has been collected from the Centrale
Bank van Suriname.

Before the daily returns were computed, the data had been cleaned so it
would not produce NA values. The first portfolio uses 201 days, whereas the
second and third use data from respectively 469 and 156 days.
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Next, the scenarios were created, the losses/returns and the value of the
portfolios were computed. Through a histogram and normal Q-Q plot we
identify the distribution of of the returns. And lastly, the estimation of the
1-Day 95% and 99% VaR of the portfolio’s. For portfolio 1, 2 and 3 the 95%
VaR estimation is the 10th, 23rd and 8th worst loss, respectively. And the
99% VaR for portfolio 1, 2 and 3 is estimated as the 2nd, 5th and 2nd worst
loss, respectively.

6.2 Results and findings

6.2.1 Portfolio 1

Figure 6.1 shows that the biggest loss of this portfolio is 21,104. This loss
falls under scenario 13. The histogram of returns, in figure 6.2, suggests that
the daily returns of the EURO/USD exchange rates in the earlier mentioned
before period, may be normally distributed. This plot only shows moderately
skewness in the distribution. Our normal Q-Q plot, further suggests that the
returns follow a normal distribution.

The VaR of Portfolio 1, in figure 6.4, is estimated:

� With 95% confidence we can say that the maximum 1-Day loss will be
14,204.79 AC.

� With 99% confidence we can say the maximum 1-Day loss will be
19,781.03 AC.

Figure 6.1: Summary of the returns and Portfolio 1 values
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Figure 6.2: Histogram of the returns (Portfolio 1)

Figure 6.3: Q-Q plot of the EURO/USD exchange rates returns from Port-
folio 1
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Figure 6.4: VaR estimation of Portfolio 1. The 95% and 99% VaR are the
tenth and second worst loss, respectively.

6.2.2 Portfolio 2

A summary of results, in figure 6.5, shows that the greatest loss that can
occur is 17,215 (under Scenario 28). The histogram of returns in figure 6.6
and the normal Q-Q plot in figure 6.7 indicate that we may assume that the
daily returns follow the normal distribution.

The VaR of Portfolio 2, in figure 6.8, is estimated:

� With 95% confidence we can say that the maximum 1-Day loss will be
6,178.94 AC.

� With 99% confidence we can say the maximum 1-Day loss will be
9,111.05 AC.

Figure 6.5: Summary of the returns and Portfolio 2 values
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Figure 6.6: Histogram of returns (Portfolio 2)

Figure 6.7: Q-Q plot of the EURO/SD exchange rates from Portfolio 2
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Figure 6.8: VaR estimation of Portfolio 2. The 95% and 99% VaR are the
23rd and 5th loss, respectively

6.2.3 Portfolio 3

At last we give a interpretation of the results we obtained in regards to Port-
folio 3.

The summary of the returns is given in figure 6.9. It shows that the worst
loss is SRD 127,572.2 (under Scenario 55) and the maximum portfolio value
is 1,434,090.

With the histogram of losses, in figure 6.10, we can already identify that
the returns do not follow the normal distribution since it shows a long tail
extending to the left. There is no symmetry and great amount of skewness
can be detected. Essentially, there would have to be zero skewness to con-
clude a normal distribution. Furthermore, the Q-Q plot (figure 6.3) indicates
that distribution of the returns is far from normal.
The VaR of Portfolio 3, seen in figure 6.11, is estimated:

� With 95% confidence we can say that the maximum 1-Day loss will be
SRD 13,615.42.

� With 99% confidence we can say the maximum 1-Day loss will be SRD
121,218.50.
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Figure 6.9: Summary of the returns and Portfolio 3 values

Figure 6.10: Histogram of the returns (Portfolio 3)
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Figure 6.11: Q-Q plot of the EURO/SRD exchange rates returns from Port-
folio 3

Figure 6.12: The 95% and 99% VaR are estimated, which are the eight and
second worst loss respectively



Chapter 7

Conclusion

In this first part of this study we gained a better understanding of the basics
of financial markets, risk modeling and valuation with models such as bino-
mial trees and Black-Scholes model.

In the last part of this study we focused on estimating the market risk for
EURO/SRD and EURO/USD exchange rates using the historical simulation
method of Value at Risk. We used this approach since it does not assume the
returns to follow a normal distribution. Another advantage of this method
is that the estimation of the risk only depends on the returns. However, it
needs all the risk factors that are obtainable over a certain historic time.
Further, we have seen that the losses in our EURO/SRD exchange rates is
driven by large spikes which occur in combination with sudden declines of
the FX rates on specific dates followed by a pretty stable period (figure 2.6).
VaR measure which is based on a specific period may therefore miss this
risk. Hence, it is not recommended to use this VaR for estimation for the
market risk. For further study, we recommend to obtain more historical data
of the EURO/SRD exchange rates and to perform stress tests of VaR. Stress
testing will provide a better estimation of the market risk for these foreign
exchange rates. It would also be interesting to compare the results of the
stress tests to the historical VaR estimation.
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Appendix A

Derivation of the
Black-Scholes-Merton equation

The Black-Scholes-Merton equation is a partial differential equation devel-
oped by three economists Fischer Black, Myron Scholes and Robert Merton.
This equation is used to price European call and put options on an under-
lying stock with no dividends. In this Appendix I derive the equation that
deduces the model in Section 4.3.1.

When it comes to deriving the Black-Scholes equation we first need to assume
that:

1. The stock price follows a stochastic process.

2. There are no dividend and transaction costs.

3. There are no arbitrage opportunities.

4. The risk-free rate, r, is known and constant.

As we’ve already looked at the Geometric Brownian motion and Itô’s
lemma, there is one more component we need to understand before deriving
this equation. This is called the Delta-hedge portfolio used to hedge the
risk on an underlying stock.

First, let’s suppose that P is the price of a call. So P is a function of S
and t.
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we have:

dP = (
∂P

∂t
+
∂P

∂S
µS +

1

2

∂2P

∂2S
σ2S2)dt+

∂P

∂S
σSdz (A.1)

The Delta-hedge portfolio consists of a call with value -P and ∂P
∂S

shares:

Π =
∂P

∂S
S − P (A.2)

The change dΠ in value of the portfolio is then:

dΠ =
∂P

∂S
dS − dP (A.3)

Substituting equation (4.8) in (4.10) we get:

dΠ =
∂P

∂S
dS − (

∂P

∂t
+
∂P

∂S
µS +

1

2

∂2P

∂2S
σ2S2)dt− ∂P

∂S
σSdz (A.4)

In section 3.3 we saw that dS = µSdt+ σSdz
So, (A.4) becomes

dΠ = −∂P
∂t
− 1

2

∂2P

∂2S
σ2S2dt (A.5)

Since P doesn’t depend on dz, this is a riskless portfolio. Since the value of
the portfolio is also independent on µ, the expected rate of return, then it
must increase at the same rate of return, i.e.,

dΠ = rΠdt (A.6)

By substituting (A.2) and (A.5) into (A.6) we get

∂P

∂t
+

1

2

∂2P

∂2S
σ2S2dt = r(P − ∂P

∂S
S) (A.7)

And now we obtain the Black-Scholes-Merton equation,

∂P

∂t
+

1

2

∂2P

∂2S
σ2S2dt+ rs

∂P

∂S
− rP = 0 (A.8)

In the Black-Scholes-Merton equation there is risk neutral valuation,
meaning that the price is not defined by the risk preferences of market share-
holders. This is because it doesn’t involve µ, which does depend on risk
preferences. The value of a forward contract also holds the risk neutral val-
uation property.



Appendix B

Distributions of the data

In this appendix we have the distributions of the foreign exchange rates data
given in histograms. The graph, in figure B.1, indicates to be close to a bell

Figure B.1: Distribution of the EURO/USD exchange rates from January 2,
2015, to October 15, 2015. The base FX rate here is 1.1386.

curve, further indicating that the distribution of the data is close to normal.
In figure B.2, the data seems to be less symmetrical compared to the one
mentioned before. The distribution of the EURO/SRD exchange rates, in
figure B.3 looks extremely skewed, suggesting that it is far from normal.

Additionally, the 95% and 99% quantile for each portfolio, corresponds with
the 5% and 1% largest loss from the 200, 468 and 155 scenarios.
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Figure B.2: Distribution of the EURO/USD exchange rates from April 1,
2020, to September 30, 2021. The base FX rate here is 1.1581.

Figure B.3: Distribution of the EURO/SRD exchange rates from January 4,
2021, to September 1, 2021. The base FX rate here is 24.275.



Appendix C

R scripts

1 #Historical simulation for EURO/SRD exchange rates from

1/4/2021 - 9/1/2021

2

3 #After the data is imported , we view the first 5 rows

4 data= EURO_SRD_exchange_rates

5 data [1:5 ,]

6

7 #All the scenarios for our portfolio are being created (with

observations from the past)

8 n=nrow(data)

9 scenario=array(c(0),c(n-1,1))

10 for (i in 2:n){scenario[i -1]=( data[i,3]/ data[i-1,3]* data[n

,3])}

11 colnames(scenario)= c(’EURO/SRD’)

12 scenario [1:10]

13

14 #Counter for the scenarios

15 nscenario=c(1:155)

16

17 #Now we calculate the value of our portfolio tomorrow

18 portfolio = c()

19 for (i in 1:n-1){portfolio[i]= 1000000* scenario[i]/data[n,3]}

20 portfolio [1:10]

21

22 #The losses/returns are calculated

23 returns =1000000 - portfolio

24 returns [1:20]

25

26 #Combine everything in one data frame

27 scenario=cbind(nscenario ,scenario ,portfolio ,returns)
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28 scenario=data.frame(scenario)

29 scenario [1:5,]

30

31 #A summary of our data set

32 summary(scenario)

33

34 #The distribution of our losses/returns in a histogram and

normal Q-Q plot

35 hist(returns ,xlab = "EURO/SRD Returns" ,freq = FALSE , col="#

C4A716")

36 curve(dnorm(x,mean=mean(returns),sd=sd(returns)), add=TRUE ,

col="red")

37 summary(returns)

38 qqnorm(returns)

39 qqline(returns , col="red")

40

41 #We perform a Shapiro -Wilk normality test

42 shapiro.test(returns)

43

44 #We sort the losses/returns from the worst to the best

45 scenario=scenario[sort.list(scenario [,4], decreasing=TRUE), ]

46 scenario [1:5,]

47

48 #We estimate the 1-day 95% VaR , which is the 8th worst loss

49 VaR95 = scenario [8,4]

50 VaR95

51

52 #We estimate the 1-day 95% VaR , which is the 2nd worst loss

53 VaR99 = scenario [2,4]

54 VaR99

1 #Historical simulation for EURO/USD exchange rates from

1/2/2015 - 10/15/2015

2

3 #After the data is imported , we view the first 5 rows

4 data= euro_dollar_exchange_rates

5 data [1:5 ,]

6

7 #All the scenarios for our portfolio are being created (with

observations from the past)

8 n=nrow(data)

9 scenario=array(c(0),c(n-1,1))

10 for (i in 2:n){scenario[i -1]=( data[i,3]/ data[i-1,3]* data[n

,3])}

11 colnames(scenario)= c(’EURO/USD’)

12 scenario [1:10]
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13

14 #Counter for the scenarios

15 nscenario=c(1:200)

16

17 #Now we calculate the value of our portfolio tomorrow

18 portfolio = c()

19 for (i in 1:n-1){portfolio[i]= 1000000* scenario[i]/data[n,3]}

20 portfolio [1:10]

21

22 #The losses/returns are calculated

23 returns =1000000 - portfolio

24 returns [1:20]

25

26 #Combine everything in one data frame

27 scenario=cbind(nscenario ,scenario ,portfolio ,returns)

28 scenario=data.frame(scenario)

29 scenario [1:5,]

30

31 #A summary of our data set

32 summary(scenario)

33

34 #The distribution of our losses/returns in a histogram and

normal Q-Q plot

35 hist(returns ,xlab = "EURO/USD Returns" ,freq = FALSE ,col= "#

C4A716")

36 curve(dnorm(x,mean=mean(returns),sd=sd(returns)), add=TRUE ,

col="red")

37 summary(returns)

38 qqnorm(returns)

39 qqline(returns , col="red")

40

41 #We sort the losses/returns from the worst to the best

42 scenario=scenario[sort.list(scenario [,4], decreasing=TRUE), ]

43 scenario [1:5,]

44

45 #We estimate the 1-day 95% VaR , which is the tenth worst loss

46 VaR95 = scenario [10,4]

47 VaR95

48

49 #We estimate the 1-day 99% VaR , which is the second worst

loss

50 VaR99 = scenario [2,4]

51 VaR99

1 #Historical simulation for EURO/USD exchange rates from

4/1/2020 - 9/30/2021
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2

3 #After the data is imported , we view the first 5 rows

4 data= euro_dollar_exchange_rates_2020 .2021

5 data [1:5 ,]

6

7 #All the scenarios for our portfolio are being created (with

observations from the past)

8 n=nrow(data)

9 scenario=array(c(0),c(n-1,1))

10 for (i in 2:n){scenario[i -1]=( data[i,3]/ data[i-1,3]* data[n

,3])}

11 colnames(scenario)= c(’EURO/USD’)

12 scenario [1:5]

13

14 #Counter for the scenarios

15 nscenario=c(1:468)

16

17 #Now we calculate the value of our portfolio tomorrow

18 portfolio = c()

19 for (i in 1:n-1){portfolio[i]= 1000000* scenario[i]/data[n,3]}

20 portfolio [1:5]

21

22

23 #The losses/returns are calculated

24 returns =1000000 - portfolio

25 returns [1:5]

26

27 #Combine everything in one data frame

28 scenario=cbind(nscenario ,scenario ,portfolio ,returns)

29 scenario=data.frame(scenario)

30 scenario [1:5,]

31

32 #A summary of our data set

33 summary(scenario)

34

35 #The distribution of our losses/returns in a histogram and

normal Q-Q plot

36 hist(returns ,xlab = "EURO/USD Returns" ,freq = FALSE , col = "

#C4A716")

37 curve(dnorm(x,mean=mean(returns),sd=sd(returns)), add=TRUE ,

col="red")

38 summary(returns)

39 qqnorm(returns)

40 qqline(returns , col="red")

41
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42 #We sort the losses/returns from the worst to the best

43 scenario=scenario[sort.list(scenario [,4], decreasing=TRUE), ]

44 scena rio[1:5,]

45

46 #We estimate the 1-day 95% VaR , which is the 23rd worst loss

47 VaR95 = scenario [23,4]

48 VaR95

49

50 #We estimate the 1-day 95% VaR , which is the 5th worst loss

51 VaR99 = scenario [5,4]

52 VaR99
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